Disease progression in a transgenic model of familial amyotrophic lateral sclerosis is dependent on both neuronal and non-neuronal zinc binding proteins.
نویسندگان
چکیده
Mutations in the Cu/Zn superoxide dismutase (SOD1) gene cause one form of familial amyotrophic lateral sclerosis, a progressive disorder of motor neurons leading to weakness and death of affected individuals. Experiments using both transgenic mice expressing mutant SOD1 and SOD1 knock-out mice have demonstrated that disease is caused by a toxic gain of function and not by a loss of normal SOD1 activity. Precise mechanisms underlying mutant SOD1 toxicity are unclear but may involve abnormal interactions between zinc and SOD1. The metallothioneins (MTs) represent a family of zinc binding proteins that can function as zinc chaperones for apo-SOD1 in vitro. We hypothesized that manipulation of metallothioneins in vivo might alter the disease phenotype of transgenic mice expressing G93A SOD1 and therefore crossed this line with MT-I and MT-II or MT-III knock-out mice. G93A SOD1 mice deficient of either MT-I and MT-II or MT-III exhibited significant reductions in survival compared with G93A SOD1 mice. In addition, motor dysfunction was markedly accelerated in G93A SOD1 mice deficient in metallothioneins with regard to onset (MT-I and MT-II) or progression (MT-III). These results indicate that the disease course in G93A SOD1 mice is dependent on levels of metallothionein expression. Because MT-I and MT-II are expressed in glia whereas MT-III is found in neurons, these results also indicate that primary changes within non-neuronal cells can affect mutant SOD1-induced disease and do so in ways distinct from primary neuronal changes.
منابع مشابه
Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis
Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...
متن کاملPathological hallmarks of amyotrophic lateral sclerosis/frontotemporal lobar degeneration in transgenic mice produced with TDP-43 genomic fragments.
Transactive response DNA-binding protein 43 ubiquitinated inclusions are a hallmark of amyotrophic lateral sclerosis and of frontotemporal lobar degeneration with ubiquitin-positive inclusions. Yet, mutations in TARDBP, the gene encoding these inclusions are associated with only 3% of sporadic and familial amyotrophic lateral sclerosis. Recent transgenic mouse studies have revealed a high degre...
متن کاملA Drosophila Model for Amyotrophic Lateral Sclerosis Reveals Motor Neuron Damage by Human SOD1*♦
Amyotrophic lateral sclerosis (ALS) is a motor neuron disease that leads to loss of motor function and early death. About 5% of cases are inherited, with the majority of identified linkages in the gene encoding copper, zinc-superoxide dismutase (SOD1). Strong evidence indicates that the SOD1 mutations confer dominant toxicity on the protein. To provide new insight into mechanisms of ALS, we hav...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملHeat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 20 شماره
صفحات -
تاریخ انتشار 2002